Theoretical analyses on a flipping mechanism of UV-induced DNA damage

نویسندگان

  • Ryuma Sato
  • Ryuhei Harada
  • Yasuteru Shigeta
چکیده

As for UV-induced DNA damage, which may induce skin cancer in animals and growth inhibition in plants, there are two types of photoproducts, namely cis-sin cyclobutane pyrimidine dimers (CPD) and pyrimidine-pyrimidone (6-4) photoproducts. When they are to be repaired, base-flipping occurs, and they bind to enzymes. However, this process remains relatively unknown at a molecular level. We analyze conformation and interaction energy changes upon base-flipping using classical molecular dynamics (CMD) simulations and ab initio electronic structure calculations. CMD simulations starting with a CPD in the flipped-in and flipped-out states showed that both states were unchanged for 500 ns, indicating the flipped-in and flipped-out processes do not occur spontaneously (without any help of the enzyme) after photo-damage. To deeply understand the reasons, we investigated interaction energy changes among bases upon structure changes during the flipped-in and flipped-out processes using Parallel Cascade Selection-MD (PaCS-MD) simulations at 400 K, followed by a fragment molecular orbital (FMO) method. The total inter-fragment interaction energy (IFIE) between CPD and other bases at the flipped-in state is estimated to be -60.08 kcal/mol. In particular, four bases strongly interact with CPD with interaction energies being -10.96, -13.70, -21.52, and -14.46 kcal/mol each. On the other hand, the total IFIE at the obtained flipped-out state increased to -10.40 kcal/mol by partly losing hydrogen bonds and π-π stacking interactions, respectively. These results clearly indicate that the base-flipping process of DNA lesions occurs with the help of external forces like interactions with appropriate enzymes such as photolyases.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The role of base flipping in damage recognition and catalysis by T4 endonuclease V.

The process of moving a DNA base extrahelical (base flipping) has been shown in the co-crystal structure of a UV-induced pyrimidine dimer-specific glycosylase, T4 endonuclease V, with its substrate DNA. Compared with other enzymes known to use base flipping, endonuclease V is unique in that it moves the base opposite the target site extrahelical, rather than moving the target base itself. Utili...

متن کامل

The Role of Base Flipping in Damage Recognition and Catalysis

The process of moving a DNA base extrahelical (base flipping) has been shown in the co-crystal structure of a UV-induced pyrimidine dimer-specific glycosylase, T4 endonuclease V, with its substrate DNA. Compared with other enzymes known to use base flipping, endonuclease V is unique in that it moves the base opposite the target site extrahelical, rather than moving the target base itself. Utili...

متن کامل

UV damage endonuclease employs a novel dual-dinucleotide flipping mechanism to recognize different DNA lesions

Repairing damaged DNA is essential for an organism's survival. UV damage endonuclease (UVDE) is a DNA-repair enzyme that can recognize and incise different types of damaged DNA. We present the structure of Sulfolobus acidocaldarius UVDE on its own and in a pre-catalytic complex with UV-damaged DNA containing a 6-4 photoproduct showing a novel 'dual dinucleotide flip' mechanism for recognition o...

متن کامل

P-62: Damage to Sperm DNA and Protamine Deficiency Induced by Risperidone in NMRI Mice

Background: Antipsychotic medication use is a common cause of hyperprolactinemia that shown to have adverse effects on male fertility. Risperidone is a combined serotonin/dopamine receptor antagonist that can cause elevations in prolactine level. Its mechanism of cytotoxic effects on testicular germ cells is not fully understood. In the present study we sought to elucidate the impact of risperi...

متن کامل

The mechanism of nucleotide excision repair-mediated UV-induced mutagenesis in nonproliferating cells.

Following the irradiation of nondividing yeast cells with ultraviolet (UV) light, most induced mutations are inherited by both daughter cells, indicating that complementary changes are introduced into both strands of duplex DNA prior to replication. Early analyses demonstrated that such two-strand mutations depend on functional nucleotide excision repair (NER), but the molecular mechanism of th...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 13  شماره 

صفحات  -

تاریخ انتشار 2016